iobjectspy.ml.vision package¶
Module contents¶
-
class
iobjectspy.ml.vision.
DataPreparation
¶ Bases:
object
Image data preparation process entry
-
static
create_training_data
(input_data, input_label, label_class_field, output_path, output_name, training_data_format, tile_format='jpg', tile_size_x=1024, tile_size_y=1024, tile_offset_x=512, tile_offset_y=512, tile_start_index=0, save_nolabel_tiles=False, input_compare_data=None, **kwargs)¶ Training data generation
Generate the training sample image tiles in specified size from the input imagery with labeled vector data.The output includes pictures, annotations, and meta-information. The pictures and annotations name one-to-one correspondence.Parameters: - input_data (str) – input image data, support image file
- input_label (str or DatasetVector) – input vector label data, support vector dataset
- label_class_field (str or None) – the field name represents the label categpries. If ‘None’ is specified, all labels are of the same category.
- output_path (str) – output training data storage path
- training_data_format (str) – output training data format, support four different formates: ‘VOC’, ‘MULTI_C’, ‘BINARY_C’, ‘SCENE_C’.
- tile_format (str) – image tile format, support ‘tif’, ‘jpg’, ‘png’, and ‘origin formates’
- tile_size_x (int) – tile size in x direction
- tile_size_y (int) – tile size in y direction
- tile_offset_x (int) – tile offset in the x direction
- tile_offset_y (int) – tile offset in y direction
- tile_start_index (int) – the initial index value for naming the tiles. The default is 0 and set to -1 when using this function to process multiple images.
- save_nolabel_tiles (bool) – whether to save tiles without labels
Returns: None
- VOC format:
- ./VOC./VOC/Annotations/000000001.xml label tiles./VOC/Images/000000001.jpg image tiles./VOC/ImageSets/Main/train.txt, val.txt, test.txt, trainval.txt training dataset tile name, validation dataset tile name, test dataset tile name, training dataset and validation dataset tile name./VOC/VOC.sda training data configuration file
- MULTI_C format:
- ./MULTI_C./MULTI_C/Images/00000000.tif image tiles./MULTI_C/Masks/00000000.png label tiles./MULTI_C/MULTI_C.sda training data configuration file
- BINARY_C format:
- ./BINARY_C./BINARY_C/Images/00000000.tif image tiles./BINARY_C/Masks/00000000.png label tiles./BINARY_C/BINARY_C.sda training data configuration file
- SCENE_C format:
- ./SCENE_C./SCENE_C/0/00000000.tif image tiles./SCENE_C/1/00000000.png image tiles./SCENE_C/2/00000000.tif image tiles…../SCENE_C/scene_classification.csv mapping the relationship between saved image file path and the categories../SCENE_C/SCENE_C.sda Training data configuration file
-
static
-
class
iobjectspy.ml.vision.
ImageryEvaluation
¶ Bases:
object
-
static
binary_classification
(inference_data, ground_truth_data, inference_class_value_field=None, ground_truth_class_value_field=None, metric_type=None, out_data='', out_data_name='metric')¶ 影像二元分类模型评估接口,可基于输入的真实标签数据和预测标签数据计算结果,支持影像和影像数据计算,矢量和矢量数据计算。
Parameters: - inference_data (str or DatasetVector) – 必选参数。推理结果数据集,输入的矢量面数据集来自于模型推理object_detect_infer
- ground_truth_data (str or DatasetVector) – 必选参数。真实标签数据集,输入的矢量面数据集来自于真实的标签数据集
- inference_class_value_field (str or None) – 可选参数。推理结果数据包含类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类
- ground_truth_class_value_field (str or None) – 可选参数。真实数据类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类
- metric_type (str or None) – 可选参数。待计算的指标名称。默认为None,为None时输出该功能全部指标。支持的metric_type为:PA,IoU,F1,Kappa
- out_data (str or Datasource or DatasourceConnectionInfo) – 可选参数。输出文件(或数据源)路径
- out_data_name (str) – 可选参数。输出文件(或数据集)名称
Returns: tuple (metric_type ,[dict, dict, …])
-
static
general_change_detection
(inference_data, ground_truth_data, inference_class_value_field=None, ground_truth_class_value_field=None, metric_type=None, out_data='', out_data_name='metric')¶ 影像通用变化检测模型评估接口,可基于输入的真实标签数据和预测标签数据计算结果,支持影像和影像数据计算,矢量和矢量数据计算。
Parameters: - inference_data (str or DatasetVector) – 必选参数。推理结果数据集,输入的矢量面数据集来自于模型推理object_detect_infer
- ground_truth_data (str or DatasetVector) – 必选参数。真实标签数据集,输入的矢量面数据集来自于真实的标签数据集
- inference_class_value_field (str or None) – 可选参数。推理结果数据包含类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类
- ground_truth_class_value_field (str or None) – 可选参数。真实数据类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类
- metric_type (str or None) – 可选参数。待计算的指标名称。默认为None,为None时输出该功能全部指标。支持的metric_type为:PA,IoU,F1,Kappa
- out_data (str or Datasource or DatasourceConnectionInfo) – 可选参数。输出文件(或数据源)路径
- out_data_name (str) – 可选参数。输出文件(或数据集)名称
Returns: tuple (metric_type ,[dict, dict, …])
-
static
multi_classification
(inference_data, ground_truth_data, inference_class_value_field=None, ground_truth_class_value_field=None, metric_type=None, out_data='', out_data_name='metric')¶ 影像地物分类模型评估接口,可基于输入的真实标签数据和预测标签数据计算结果,支持影像和影像数据计算,矢量和矢量数据计算。
Parameters: - inference_data (str or DatasetVector) – 必选参数。推理结果数据集,输入的矢量面数据集来自于模型推理object_detect_infer
- ground_truth_data (str or DatasetVector) – 必选参数。真实标签数据集,输入的矢量面数据集来自于真实的标签数据集
- inference_class_value_field (str or None) – 可选参数。推理结果数据包含类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类
- ground_truth_class_value_field (str or None) – 可选参数。真实数据类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类
- metric_type (str or None) – 可选参数。待计算的指标名称。默认为None,为None时输出该功能全部指标。支持的metric_type为:F1,CPA,IoU,Kappa,mPA,mIoU
- out_data (str or Datasource or DatasourceConnectionInfo) – 可选参数。输出文件(或数据源)路径
- out_data_name (str) – 可选参数。输出文件(或数据集)名称
Returns: tuple (metric_type ,[dict, dict, …])
-
static
object_detection
(inference_data, ground_truth_data, inference_class_value_field=None, ground_truth_class_value_field='category', metric_type=None, out_data='', out_data_name='metric', iou_thr='')¶ 影像目标检测模型评估接口,可基于输入的预测标签数据集与真实标签数据集计算结果计算指标(只支持规则正矩形数据)
Parameters: - inference_data (str or DatasetVector) – 必选参数。推理结果数据集,输入的矢量面数据集来自于模型推理object_detect_infer
- ground_truth_data (str or DatasetVector) – 必选参数。真实标签数据集,输入的矢量面数据集来自于真实的标签数据集
- inference_class_value_field (str or None) – 可选参数。推理结果数据包含类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类。
- ground_truth_class_value_field (str or None) – 可选参数。真实数据类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类。
- metric_type (str or None) – 可选参数。待计算的指标名称。默认为None,为None时输出该功能全部指标。支持的metric_type为:F1、Recall、Precision、AP、mAP。
- out_data (str or Datasource or DatasourceConnectionInfo) – 可选参数。输出文件(或数据源)路径
- out_data_name (str) – 可选参数。输出文件(或数据集)名称
- iou_thr (float) – 可选参数。IoU(Intersection over Union)用作评估目标检测模型准确性的阈值的交集与并集的比率.分子是推理边界框和真实边界框之间的重叠区域,分母是两个边界框合并的区域。IoU值应在0到1的范围内,[0,1] 示例:0.5
Returns: tuple (metric_type ,[dict, dict, …])
-
static
object_extraction
(inference_data, ground_truth_data, inference_class_value_field=None, ground_truth_class_value_field='category', metric_type=None, out_data='', out_data_name='metric', iou_thr='')¶ 影像对象提取模型评估接口,可基于输入的预测标签数据集与真实标签数据集计算结果计算指标
Parameters: - inference_data (str or DatasetVector) – 必选参数。推理结果数据集,输入的矢量面数据集来自于模型推理object_detect_infer
- ground_truth_data (str or DatasetVector) – 必选参数。真实标签数据集,输入的矢量面数据集来自于真实的标签数据集
- inference_class_value_field (str or None) – 可选参数。推理结果数据包含类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类。
- ground_truth_class_value_field (str or None) – 可选参数。真实数据类别字段名。如果指定的字段为None,则默认去找’value’字段,若字段不存在,则所有记录都被认定为是同一个类。
- metric_type (str or None) – 可选参数。待计算的指标名称。默认为None,为None时输出该功能全部指标。支持的metric_type为:F1、Recall、Precision、AP、mAP。
- out_data (str or Datasource or DatasourceConnectionInfo) – 可选参数。输出文件(或数据源)路径
- out_data_name (str) – 可选参数。输出文件(或数据集)名称
- iou_thr (float) – 可选参数。IoU(Intersection over Union)用作评估目标检测模型准确性的阈值的交集与并集的比率.分子是推理边界框和真实边界框之间的重叠区域,分母是两个边界框合并的区域。IoU值应在0到1的范围内,[0,1] 示例:0.5
Returns: tuple (metric_type ,[dict, dict, …])
-
super_resolution
(*args, **kwargs)¶
-
static
-
class
iobjectspy.ml.vision.
ImageryTrainer
(train_data_path, config, epoch, batch_size, lr, output_model_path, output_model_name, backbone_name, backbone_weight_path=None, log_path='./', reload_model=False, pretrained_model_path=None, gpus=[0], init_data=True, **kwargs)¶ Bases:
object
Model training function entrance for pictures.
Parameters: - train_data_path (str) – training data path
- config (str) – configuration file path
- epoch (int) – number of iterations
- batch_size (int) – batch size
- lr (float) – learning rate
- output_model_path (str) – output model file path
- output_model_name (str) – output model file name
- backbone_name (str) – backtrunk network name
- backbone_weight_path (str or None) – path to the trunk network model file. If it is None, the model weight is initialized randomly
- log_path (str) – log and checkpoint output paths
- reload_model (bool) – whether to reload the checkpoint model trained previously
- pretrained_model_path (str or None) – pre-trained model path (optional)
-
binary_classify_train
()¶ Function entry for binary classification model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
general_change_detection_train
()¶ 通用变化检测模型训练功能
生成模型将存储在输入的 ‘output_model_path’ 路径下
Returns: None
-
multi_classify_train
()¶ Function entry for ground object classification model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
object_detect_train
()¶ Function entry for object detection model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
object_extract_train
()¶ Function entry for objects classification model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
scene_classify_train
()¶ Function entry for scene classification model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
class
iobjectspy.ml.vision.
PictureTrainer
(train_data_path, config, epoch, batch_size, lr, output_model_path, output_model_name, backbone_name, backbone_weight_path=None, log_path='./', reload_model=False, pretrained_model_path=None, gpus=[0], init_data=True, **kwargs)¶ Bases:
object
Function entry for picture data model training.
Parameters: - train_data_path (str) – training data path
- config (str) – configuration file path
- epoch (int) – number of iterations
- batch_size (int) – batch size
- lr (float) – learning rate
- output_model_path (str) – output model file path
- output_model_name (str) – output model file name
- backbone_name (str) – backtrunk network name
- backbone_weight_path (str or None) – path to the trunk network model file. If it is None, the model weight is initialized randomly
- log_path (str) – log and checkpoint output paths
- reload_model (bool) – whether to reload the checkpoint model trained previously
- pretrained_model_path (str or None) – pre-trained model path (optional)
-
object_detect_train
()¶ Function entry for object detection model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
object_extraction_train
()¶ 目标检测模型训练功能
生成模型将存储在输入的 ‘output_model_path’ 路径下
Returns: None
-
picture_classify_train
()¶ Function entry for picture classification model training. The build model will be stored under the ‘output_model_path’ folder :return: None
-
picture_object_extraction_train
()¶ 图片分割训练功能:基于Mask-rcnn
生成模型将存储在输入的 ‘output_model_path’ 路径下
Returns: None
-
class
iobjectspy.ml.vision.
ImageryInference
(model_path, gpus=[0], batch_size=1, **kwargs)¶ Bases:
object
Image data model inference function entry
Parameters: model_path (str) – saved model path -
binary_classify_infer
(*args, **kwargs)¶
-
close
()¶ Closed the loaded model
-
general_changedet_infer
(*args, **kwargs)¶
-
multi_classify_infer
(*args, **kwargs)¶
-
object_classify_infer
(input_data, input_region, field_name='class_type', **kwargs)¶ 影像对象分类 支持tif影像数据,对应的影像区域矢量数据集
Parameters: - input_data (str) – 待推理的数据
- input_region (DatasetVector) – 对应的矢量面数据集
- field_name (str) – 输出类别的字段名称
Returns: 数据集名称
-
object_detect_infer
(*args, **kwargs)¶
-
object_extract_infer
(*args, **kwargs)¶
-
prompt_segmentation_infer
(*args, **kwargs)¶
-
scene_classify_infer
(*args, **kwargs)¶
-
super_resolution_infer
(*args, **kwargs)¶
-
-
class
iobjectspy.ml.vision.
PictureInference
(model_path, gpus=[0], batch_size=1, **kwargs)¶ Bases:
object
Model inference function entry for imagery data
Parameters: model_path (str) – model saved path -
close
()¶ Close the loaded model
-
object_detect_infer
(*args, **kwargs)¶
-
object_extract_infer
(*args, **kwargs)¶
-
picture_classify_infer
(*args, **kwargs)¶
-
-
class
iobjectspy.ml.vision.
ModelConverter
(model_path, output_model_path, **kwargs)¶ Bases:
object
模型转换功能入口 支持输出torchscript, onnx等中间模型 支持Libtorch,ONNX Runtime,TensorRT,Ncnn,Openppl,OpenVINO等多个推理引擎
Parameters: - model_path (str) – 模型存储路径
- output_model_path (str) – 模型输出路径
-
pytorch2onnx
()¶ onnx模型转换 :return:
-
pytorch2torchscript
()¶ torchscript模型转换 :return: